Soft-IntroVAE for Continuous Latent Space Image Super-Resolution
Publiceringsår
2023
Upphovspersoner
Liu Zhi-Song; Wang Zijia; Jia Zhen
Abstrakt
Continuous image super-resolution (SR) recently receives a lot of attention from researchers, for its practical and flexible image scaling for various displays. Local implicit image representation is one of the methods that can map the coordinates and 2D features for latent space interpolation. Inspired by Variational AutoEncoder, we propose a Soft-introVAE for continuous latent space image super-resolution (SVAE-SR). A novel latent space adversarial training is achieved for photo-realistic image restoration. To further improve the quality, a positional encoding scheme is used to extend the original pixel coordinates by aggregating frequency information over the pixel areas. We show the effectiveness of the proposed SVAE-SR through quantitative and qualitative comparisons, and further, illustrate its generalization in denoising and real-image super-resolution.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Konferens
Artikelstyp
Annan artikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A4 Artikel i en konferenspublikationPublikationskanalens uppgifter
Moderpublikationens namn
2023 IEEE International Conference on Image Processing (ICIP)
ISBN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Statistik; Data- och informationsvetenskap
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Förlagets internationalitet
Internationell
Internationell sampublikation
Ja
Sampublikation med ett företag
Ja
DOI
10.1109/ICIP49359.2023.10223122
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja