Decomposition-Based Stacked Bagging Boosting Ensemble for Dynamic Line Rating Forecasting
Publiceringsår
2023
Upphovspersoner
Ahmadi Amirhossein; Taheri Saman; Ghorbani Reza; Vahidinasab Vahid; Mohammadi-ivatloo Behnam
Abstrakt
Effective exploitation of overhead transmission lines needs reliable and precise dynamic line rating forecasting. High-accuracy dynamic line rating forecasting, in particular, is an important short-term method for coping with grid congestion, enhancing grid stability, and accommodating high renewable energy penetration. Due to the non-stationarity and stochasticity of the meteorological variables, a single model is often not sufficient to accurately predict the dynamic line rating. Herein, a new stacked bagging boosting ensemble is developed based on multivariate empirical mode decomposition to overcome single models' restrictions and increase the dynamic line rating forecasting performance. The developed ensemble is utilized on the data gathered from a 400 kV aluminum conductor steel-reinforced overhead power line with a length of 32.85 Km between Ghadamgah and Binalood wind farms, located in the northeast of Iran. The simulation results substantiate that the proposed ensemble can capture meteorological variables' non-linear characteristics, yielding more accurate yet robust to noisy data forecasts than single forecasting models.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Volym
38
Nummer
5
Sidor
2987-2997
ISSN
Publikationsforum
Publikationsforumsnivå
2
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
El-, automations- och telekommunikationsteknik, elektronik
Förlagets internationalitet
Internationell
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1109/TPWRD.2023.3267511
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja