Matching method for mutated veneer sheet images using gray-level co-occurrence matrix features
Publiceringsår
2023
Upphovspersoner
Savolainen Jyrki
Abstrakt
This paper studies the tracking of wooden veneer sheets by matching their respective wet and dry colour images. The tracking of veneer sheets has proved to be a challenging task due to random mutations during processing in terms of color changes, the emergence of defects, and, occasionally, lost pieces of the veneer surface. The proposed matching procedure involves image segmentation with five different sizes, followed by segment-wise extraction of Gray Level Co-occurrence Matrix (GLCM) textural feature arrays, and their similarity comparisons respectively. A voting mechanism is introduced that allocates the correct match based on the majority. An optional shifting procedure is applied to match candidates with missing areas. The method is demonstrated and benchmarked using a real-world dataset sourced from the industry, comprising 2579 high-quality images of spruce veneer pairs obtained from peeling and drying. In comparison to earlier studies that employed randomized 50 pair sampling on the same dataset, our approach yields a matching accuracy of 99.41%, outperforming the previously reported 84.93%. These findings have relevance for researchers in wood image analytics and carry practical implications for large-scale, automated veneer production facilities seeking innovative ways to optimize their raw material usage.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap; Övrig teknik och teknologi; Företagsekonomi
Nyckelord
[object Object],[object Object],[object Object]
Förlagets internationalitet
Internationell
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
DOI
10.1007/s00107-023-01946-3
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja