undefined

Bayesian inversion with α-stable priors

Publiceringsår

2023

Upphovspersoner

Suuronen Jarkko; Soto Tomás; Chada Neil K; Roininen Lassi

Abstrakt

Abstract We propose using Lévy a-stable distributions to construct priors for Bayesian inverse problems. The construction is based on Markov fields with stable-distributed increments. Special cases include the Cauchy and Gaussian distributions, with stability indices a = 1, and a = 2, respectively. Our target is to show that these priors provide a rich class of priors for modeling rough features. The main technical issue is that the a-stable probability density functions lack closed-form expressions, and this limits their applicability. For practical purposes, we need to approximate probability density functions through numerical integration or series expansions. For Bayesian inversion, the currently available approximation methods are either too time-consuming or do not function within the range of stability and radius arguments. To address the issue, we propose a new hybrid approximation method for symmetric univariate and bivariate a-stable distributions that is both fast to evaluate and accurate enough from a practical viewpoint. In the numerical implementation of a-stable random field priors, we use the constructed approximation method. We show how the constructed priors can be used to solve specific Bayesian inverse problems, such as the deconvolution problem and the inversion of a function governed by an elliptic partial differential equation. We also demonstrate hierarchical a-stable priors in the one-dimensional deconvolution problem. For all numerical examples, we use maximum a posteriori estimation. To that end, we exploit the limited-memory BFGS and its bounded variant for the estimator.
Visa mer

Organisationer och upphovspersoner

Lappeenrannan–Lahden teknillinen yliopisto LUT

Suuronen Jarkko

Roininen Lassi Orcid -palvelun logo

Soto Tomas

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

39

Nummer

10

Artikelnummer

105007

Publikationsforum

59104

Publikationsforumsnivå

3

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Matematik

Förlagets internationalitet

Internationell

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1088/1361-6420/acf154

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja