Bayesian inversion with α-stable priors
Publiceringsår
2023
Upphovspersoner
Suuronen Jarkko; Soto Tomás; Chada Neil K; Roininen Lassi
Abstrakt
Abstract We propose using Lévy a-stable distributions to construct priors for Bayesian inverse problems. The construction is based on Markov fields with stable-distributed increments. Special cases include the Cauchy and Gaussian distributions, with stability indices a = 1, and a = 2, respectively. Our target is to show that these priors provide a rich class of priors for modeling rough features. The main technical issue is that the a-stable probability density functions lack closed-form expressions, and this limits their applicability. For practical purposes, we need to approximate probability density functions through numerical integration or series expansions. For Bayesian inversion, the currently available approximation methods are either too time-consuming or do not function within the range of stability and radius arguments. To address the issue, we propose a new hybrid approximation method for symmetric univariate and bivariate a-stable distributions that is both fast to evaluate and accurate enough from a practical viewpoint. In the numerical implementation of a-stable random field priors, we use the constructed approximation method. We show how the constructed priors can be used to solve specific Bayesian inverse problems, such as the deconvolution problem and the inversion of a function governed by an elliptic partial differential equation. We also demonstrate hierarchical a-stable priors in the one-dimensional deconvolution problem. For all numerical examples, we use maximum a posteriori estimation. To that end, we exploit the limited-memory BFGS and its bounded variant for the estimator.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Förläggare
Volym
39
Nummer
10
Artikelnummer
105007
ISSN
Publikationsforum
Publikationsforumsnivå
3
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Matematik
Förlagets internationalitet
Internationell
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1088/1361-6420/acf154
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja