Sparse convex optimization toolkit: a mixed-integer framework
Publiceringsår
2023
Upphovspersoner
Alireza Olama; Eduardo Camponogara; Jan Kronqvist
Abstrakt
This paper proposes an open-source distributed solver for solving Sparse Convex Optimization (SCO) problems over computational networks. Motivated by past algorithmic advances in mixed-integer optimization, the Sparse Convex Optimization Toolkit (SCOT) adopts a mixed-integer approach to find exact solutions to SCO problems. In particular, SCOT combines various techniques to transform the original SCO problem into an equivalent convex Mixed-Integer Nonlinear Programming (MINLP) problem that can benefit from high-performance and parallel computing platforms. To solve the equivalent mixed-integer problem, we present the Distributed Hybrid Outer Approximation (DiHOA) algorithm that builds upon the LP/NLP-based branch-and-bound and is tailored for this specific problem structure. The DiHOA algorithm combines the so-called single- and multi-tree outer approximation, naturally integrates a decentralized algorithm for distributed convex nonlinear subproblems, and employs enhancement techniques such as quadratic cuts. Finally, we present detailed computational experiments that show the benefit of our solver through numerical benchmarks on 140 SCO problems with distributed datasets. To show the overall efficiency of SCOT we also provide solution profiles comparing SCOT to other state-of-the-art MINLP solvers.
Visa merOrganisationer och upphovspersoner
Åbo Akademi
Kronqvist Jan
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal/Serie
Volym
38
Nummer
6
Sidor
1269-1295
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap
Nyckelord
[object Object],[object Object],[object Object],[object Object]
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1080/10556788.2023.2222429
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja