undefined

Explainable stress type classification captures physiologically relevant responses in the Maastricht Acute Stress Test

Publiceringsår

2023

Upphovspersoner

Tervonen, Jaakko; Närväinen, Johanna; Mäntyjärvi, Jani; Pettersson, Kati

Abstrakt

Introduction: Current stress detection methods concentrate on identification of stress and non-stress states despite the existence of various stress types. The present study performs a more specific, explainable stress classification, which could provide valuable information on the physiological stress reactions. Methods: Physiological responses were measured in the Maastricht Acute Stress Test (MAST), comprising alternating trials of cold pressor (inducing physiological stress and pain) and mental arithmetics (eliciting cognitive and social-evaluative stress). The responses in these subtasks were compared to each other and to the baseline through mixed model analysis. Subsequently, stress type detection was conducted with a comprehensive analysis of several machine learning components affecting classification. Finally, explainable artificial intelligence (XAI) methods were applied to analyze the influence of physiological features on model behavior. Results: Most of the investigated physiological reactions were specific to the stressors, and the subtasks could be distinguished from baseline with up to 86.5 % balanced accuracy. The choice of the physiological signals to measure (up to 25 %-point difference in balanced accuracy) and the selection of features (up to 7 %-point difference) were the two key components in classification. Reflection of the XAI analysis to mixed model results and human physiology revealed that the stress detection model concentrated on physiological features relevant for the two stressors. Discussion: The findings confirm that multimodal machine learning classification can detect different types of stress reactions from baseline while focusing on physiologically sensible changes. Since the measured signals and feature selection affected classification performance the most, data analytic choices left limited input information uncompensated.
Visa mer

Organisationer och upphovspersoner

Teknologiska forskningscentralen VTT Ab

Tervonen Jaakko Orcid -palvelun logo

Mäntyjärvi Jani Orcid -palvelun logo

Närväinen Johanna

Pettersson Kati

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

4

Artikelnummer

1294286

Publikationsforum

89819

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Licens för förläggarens version

CC BY

Parallellsparad

Nej

Publiceringsavgift för öppen tillgång €

1574

Betalningsår för den öppen tillgång publiceringsavgiften

2023

Övriga uppgifter

Vetenskapsområden

Neurovetenskaper

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object]

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.3389/fnrgo.2023.1294286

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja