Bio-Inspired Intelligent Systems: Negotiations between Minimum Manifest Task Entropy and Maximum Latent System Entropy in Changing Environments
Publiceringsår
2023
Upphovspersoner
Fox, Stephen; Heikkilä, Tapio; Halbach, Eric; Soutukorva, Samuli
Abstrakt
In theoretical physics and theoretical neuroscience, increased intelligence is associated with increased entropy, which entails potential access to an increased number of states that could facilitate adaptive behavior. Potential to access a larger number of states is a latent entropy as it refers to the number of states that could possibly be accessed, and it is also recognized that functioning needs to be efficient through minimization of manifest entropy. For example, in theoretical physics, the importance of efficiency is recognized through the observation that nature is thrifty in all its actions and through the principle of least action. In this paper, system intelligence is explained as capability to maintain internal stability while adapting to changing environments by minimizing manifest task entropy while maximizing latent system entropy. In addition, it is explained how automated negotiation relates to balancing adaptability and stability; and a mathematical negotiation model is presented that enables balancing of latent system entropy and manifest task entropy in intelligent systems. Furthermore, this first principles analysis of system intelligence is related to everyday challenges in production systems through multiple simulations of the negotiation model. The results indicate that manifest task entropy is minimized when maximization of latent system entropy is used as the criterion for task allocation in the simulated production scenarios.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Licens för förläggarens version
CC BY
Parallellsparad
Nej
Publiceringsavgift för öppen tillgång €
1906
Betalningsår för den öppen tillgång publiceringsavgiften
2023
Övriga uppgifter
Vetenskapsområden
El-, automations- och telekommunikationsteknik, elektronik
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
DOI
10.3390/e25111541
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja