A hybrid generative adversarial network for weakly-supervised cloud detection in multispectral images
Publiceringsår
2022
Upphovspersoner
Li, Jun; Wu, Zhaocong; Sheng, Qinghong; Wang, Bo; Hu, Zhongwen; Zheng, Shaobo; Camps-Valls, Gustau; Molinier, Matthieu; Chen, Jing M.
Abstrakt
<p>Cloud detection is a crucial step in the optical satellite image processing pipeline for Earth observation. Clouds in optical remote sensing images seriously affect the visibility of the background and greatly reduce the usability of images for land applications. Traditional methods based on thresholding, multi-temporal or multi-spectral information are often specific to a particular satellite sensor. Convolutional Neural Networks for cloud detection often require labeled cloud masks for training that are very time-consuming and expensive to obtain. To overcome these challenges, this paper presents a hybrid cloud detection method based on the synergistic combination of generative adversarial networks (GAN) and a physics-based cloud distortion model (CDM). The proposed weakly-supervised GAN-CDM method (available online https://github.com/Neooolee/GANCDM) only requires patch-level labels for training, and can produce cloud masks at pixel-level in both training and testing stages. GAN-CDM is trained on a new globally distributed Landsat 8 dataset (WHUL8-CDb, available online doi:https://doi.org/10.5281/zenodo.6420027) including image blocks and corresponding block-level labels. Experimental results show that the proposed GAN-CDM method trained on Landsat 8 image blocks achieves much higher cloud detection accuracy than baseline deep learning-based methods, not only in Landsat 8 images (L8 Biome dataset, 90.20% versus 72.09%) but also in Sentinel-2 images (“S2 Cloud Mask Catalogue” dataset, 92.54% versus 77.00%). This suggests that the proposed method provides accurate cloud detection in Landsat images, has good transferability to Sentinel-2 images, and can quickly be adapted for different optical satellite sensors.</p>
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal/Serie
Volym
280
Artikelnummer
113197
ISSN
Publikationsforum
Publikationsforumsnivå
3
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Licens för förläggarens version
CC BY NC
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Jordbruksvetenskap
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object]
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1016/j.rse.2022.113197
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja