undefined

A hybrid generative adversarial network for weakly-supervised cloud detection in multispectral images

Publiceringsår

2022

Upphovspersoner

Li, Jun; Wu, Zhaocong; Sheng, Qinghong; Wang, Bo; Hu, Zhongwen; Zheng, Shaobo; Camps-Valls, Gustau; Molinier, Matthieu; Chen, Jing M.

Abstrakt

<p>Cloud detection is a crucial step in the optical satellite image processing pipeline for Earth observation. Clouds in optical remote sensing images seriously affect the visibility of the background and greatly reduce the usability of images for land applications. Traditional methods based on thresholding, multi-temporal or multi-spectral information are often specific to a particular satellite sensor. Convolutional Neural Networks for cloud detection often require labeled cloud masks for training that are very time-consuming and expensive to obtain. To overcome these challenges, this paper presents a hybrid cloud detection method based on the synergistic combination of generative adversarial networks (GAN) and a physics-based cloud distortion model (CDM). The proposed weakly-supervised GAN-CDM method (available online https://github.com/Neooolee/GANCDM) only requires patch-level labels for training, and can produce cloud masks at pixel-level in both training and testing stages. GAN-CDM is trained on a new globally distributed Landsat 8 dataset (WHUL8-CDb, available online doi:https://doi.org/10.5281/zenodo.6420027) including image blocks and corresponding block-level labels. Experimental results show that the proposed GAN-CDM method trained on Landsat 8 image blocks achieves much higher cloud detection accuracy than baseline deep learning-based methods, not only in Landsat 8 images (L8 Biome dataset, 90.20% versus 72.09%) but also in Sentinel-2 images (“S2 Cloud Mask Catalogue” dataset, 92.54% versus 77.00%). This suggests that the proposed method provides accurate cloud detection in Landsat images, has good transferability to Sentinel-2 images, and can quickly be adapted for different optical satellite sensors.</p>
Visa mer

Organisationer och upphovspersoner

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

280

Artikelnummer

113197

Publikationsforum

66054

Publikationsforumsnivå

3

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Licens för förläggarens version

CC BY NC

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

Jordbruksvetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object]

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1016/j.rse.2022.113197

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja