Stochastic signal classification procedures with reference to electroencephalogram analysis
Publiceringsår
1985
Upphovspersoner
Preuss, Robert
Abstrakt
A number of stochastic models and statistical tests are synthesised to develop a general framework for signal analysis and classification. The particular application which provides a focus for this work is the automatic real-time analysis and classification of human electroencephalograms as a clinical aid to diagnosis, treatment and long term monitoring of epileptic patients. Stochastic modelling and estimation procedures are described; these procedures can be employed together with previously recorded data to determine signal classes which are differentiated on the basis of their first and second order moments. Since nearly all analyses of the electroencephalogram study only these moments, and because these moments have been demonstrated to be reliable indicators of the physiological condition, it is expected that the resulting signal classes will be clinically meaningful. It is shown that standard methods of statical hypothesis testing can be used to classify segments of the electroencephalographic record, various approximations are introduced, including a hierarchical test procedure, to develop suboptimal but computationally efficient classification procedures. The use of expert judgement to relate these stochastically differentiated signal classes to the answers to clinically meaningful questions is also discussed; this relationship then permits the system to provide its classification results in a clinically meaningful form.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Separat verk
Målgrupp
Facklig
UKM:s publikationstyp
D4 Publicerad utvecklings- eller forskningsrapport eller -utredning
Publikationskanalens uppgifter
Journal/Serie
Valtion teknillinen tutkimuskeskus. Tutkimuksia - Research Reports
Förläggare
VTT Technical Research Centre of Finland
ISSN
ISBN
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Licens för förläggarens version
Annan licens
Parallellsparad
Nej
Övriga uppgifter
Nyckelord
[object Object],[object Object],[object Object]
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Nej