A neural network based approach for machine fault diagnosis
Publiceringsår
1991
Upphovspersoner
Vepsäläinen, Ari
Abstrakt
In this paper a novel approach to classify the state of a machine based on vibration measurements and the use of dynamic neural network is presented. Some comparisons are made between the presented method, the linear classifier, the third-order nonlinear classifier, Markov model based classifier and the recurrent backpropagation network. The proposed classifier can be considered as a spatiotemporal neural network. Spatiotemporal neural networks are used to transform input patterns into timevarying class number output codes. Usually, time is assumed to move forward in small discrete steps. The recurrent backpropagation network and the Spatiotemporal Pattern Recognizer Neural Network (SPRAIN) are other examples of spatiotemporal neural networks. The spatiotemporal neural network can effectively store much more information than most other types of neural networks with same number of nodes. The presented approach is suited to machine maintenance for two reasons: Firstly, it can model temporal relations. For example, it can describe the development of the symptoms of faults. Secondly, it can efficiently handle large amounts of data. Because the spectral signatures of faults may change significantly depending on environmental, operating and physical conditions, the amount of training information is very large.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Separat verk
Målgrupp
Facklig
UKM:s publikationstyp
D4 Publicerad utvecklings- eller forskningsrapport eller -utredning
Publikationskanalens uppgifter
Journal
Valtion teknillinen tutkimuskeskus. Tiedotteita
Förläggare
VTT Technical Research Centre of Finland
Nummer
1274
ISSN
ISBN
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Licens för förläggarens version
Annan licens
Parallellsparad
Nej
Övriga uppgifter
Nyckelord
[object Object],[object Object],[object Object]
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Nej