Statistical models for expert judgement and wear prediction: Dissertation
Publiceringsår
1994
Upphovspersoner
Pulkkinen, Urho
Abstrakt
This thesis studies the statistical analysis of expert judgements and prediction of wear. The point of view adopted is the one of information theory and Bayesian statistics. A general Bayesian framework for analyzing both the expert judgements and wear prediction is presented. Information theoretic interpretations are given for some averaging techniques used in the determination of concensus distributions. Further, information theoretic models are compared with a Bayesian model. The general Bayesian framework is then applied in analyzing expert judgements based on ordinal comparisons. In this context, the value of information lost in the ordinal comparison process is analyzed by applying decision theoretic concepts. As a generalization of the Bayesian framework, stochastic filtering models for wear prediction are formulated. These models utilize the information from condition monitoring measurements in updating the residual life distribution of mechanical components. Finally, the application of stochastic control models in optimizing operational strategies for inspected components are studied. Monte-Carlo simulation methods, such as the Gibbs sampler and the stochastic quasi-gradient method, are applied in the determination of posterior distributions and in the solution of stochastic optimization problems.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Separat verk
Målgrupp
Vetenskaplig
UKM:s publikationstyp
G5 Artikelavhandling
Publikationskanalens uppgifter
Journal
VTT Publications
Förläggare
VTT Technical Research Centre of Finland
Nummer
181
ISSN
ISBN
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ingen information
Licens för förläggarens version
Annan licens
Parallellsparad
Nej
Övriga uppgifter
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Nej