Thermomechanics of creep equation proposed by le Gac and Duval
Publiceringsår
1994
Upphovspersoner
Santaoja, Kari
Abstrakt
Mathematical modelling of deformation of construction steels at elevated temperatures was in- vestigated in the present work. Special attention was paid to the derivation of constitutive equations using irreversible thermodynamics. As a practical example the creep equation proposed by Le Gac and Duval was studied from the thermomechanical point of view. Physical and mathematical modelling of creep processes were briefly considered. Two different physical interpretations found in literature, together with their mathematical formulations for the constitutive equations proposed by Le Gac and Duval, were examined in detail. A detailed critique on the interpretations and their mathematical formulations was given, and some improvements were also suggested. The meaning of a 'correct set' of state variables was discussed. The consequences of the second law of thermodynamics found by studying 'constitutive processes' were also considered. The significant role of the 'constitutive processes' in the derivation of the Clausius-Duhem inequality was pointed out. The author suggested that scientists should examine the reality of the 'constitutive processes', i.e. that the material under consideration can actually follow the 'constitutive process'. The explicit forms of the specific Helmholz free energy and the specific dissipation function (or their Legendre transformations) were set out. Using the above-mentioned functions, the constitutive equation proposed by Le Gac and Duval was derived. The values of the material parameters for the power plant material 10 CrMo 9 10 were given. The material model was implemented into the ABAQUS finite element method program. The computed examples showed that even a 27-year-long creep response can be predicted.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Separat verk
Målgrupp
Vetenskaplig
Kollegialt utvärderad
Kollegialt utvärderad
UKM:s publikationstyp
C1 Separat utgivet vetenskapligt verkPublikationskanalens uppgifter
Journal/Serie
VTT Publications
Förläggare
VTT Technical Research Centre of Finland
Nummer
193
ISSN
ISBN
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Licens för förläggarens version
Annan licens
Parallellsparad
Nej
Övriga uppgifter
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Nej