undefined

Method feasibility study: Bayesian networks

Publiceringsår

2000

Upphovspersoner

Hiirsalmi, Mikko

Abstrakt

Basic principles of Bayesian networks, inference with them and discovery of Bayesian network structures are briefly introduced. Then, the applicability of these methods to the analysis of process data is addressed. The case study problems involve mining of dependencies from training data and using the discovered dependency models for prediction of quality indicator values. Prediction results are presented as diagrams and commented. The predictions achieved are promising but it seems that with the current models the prediction accuracy is not good enough for the case problem. With suitable training data, Bayesian dependency models may be discovered from the data and applied in many ways. The possibilities range from "What- If" -analysis of the effect of value changes to the probability distributions of the other variables to sequential decision making using influence diagrams. The generated models may be implemented as C programs similarly to the way tested in this case study.
Visa mer

Organisationer och upphovspersoner

Publikationstyp

Publikationsform

Separat verk

Målgrupp

Facklig

UKM:s publikationstyp

D4 Publicerad utvecklings- eller forskningsrapport eller -utredning

Publikationskanalens uppgifter

Journal

VTT Information Technology. Research Report

Förläggare

VTT Technical Research Centre of Finland

Nummer

TTE1-2000-29

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Licens för förläggarens version

Annan licens

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object]

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Nej