undefined

Fabrication of SOI micromechanical devices: Dissertation

Publiceringsår

2005

Upphovspersoner

Kiihamäki, Jyrki

Abstrakt

This work reports on studies and the fabrication process development of micromechanical silicon-on-insulator (SOI) devices. SOI is a promising starting material for fabrication of single crystal silicon micromechanical devices and basis for monolithic integration of sensors and integrated circuits. The buried oxide layer of an SOI wafer offers an excellent etch stop layer for silicon etching and sacrificial layer for fabrication of capacitive sensors. Deep silicon etching is studied and the aspect ratio dependency of the etch rate and loading effects are described and modeled. The etch rate of the deep silicon etching process is modeled with a simple flow conductance model, which takes into account only the initial etch rate and reaction probability and flow resistance of the etched feature. The used model predicts qualitatively the aspect-ratio-dependent etch rate for varying trench widths and rectangular shapes. The design related loading can be modeled and the effects of the loading can be minimized with proper etch mask design. The basic SOI micromechanics process is described and the drawbacks and limitations of the process are discussed. Improvements to the process are introduced as well as IR microscopy as a new method to inspect the sacrificial etch length of the SOI structure. A new fabrication process for SOI micromechanics has been developed that alleviates metallization problems during the wet etching of the sacrificial layer. The process is based on forming closed cavities under the structure layer of SOI with the help of a semi-permeable polysilicon film. Prototype SOI device fabrication results are presented. High Q single crystal silicon micro resonators have potential for replacing bulky quartz resonators in clock circuits. Monolithic integration of micromechanical devices and an integrated circuit has been demonstrated with the developed process using the embedded vacuum cavities.
Visa mer

Organisationer och upphovspersoner

Publikationstyp

Publikationsform

Separat verk

Målgrupp

Vetenskaplig

UKM:s publikationstyp

G5 Artikelavhandling

Publikationskanalens uppgifter

Journal

VTT Publications

Förläggare

VTT Technical Research Centre of Finland

Nummer

559

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Licens för förläggarens version

Annan licens

Parallellsparad

Nej

Övriga uppgifter

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Nej