undefined

Development and testing of VTT approach to risk-informed in-service inspection methodology: Final report of SAFIR INTELI INPUT Project RI-ISI

Publiceringsår

2007

Upphovspersoner

Cronvall, Otso; Männistö, Ilkka; Simola, Kaisa

Abstrakt

This report summarises the results of a research project on risk-informed in-service inspection (RI-ISI) methodology conducted in the Finnish national nuclear energy research programme SAFIR (2003-2006). The purpose of this work was to increase the accuracy of risk estimates used in RI-ISI analyses of nuclear power plant (NPP) piping systems, and to quantitatively evaluate the effects of different piping inspection strategies on risk. Piping failure occurrences were sampled by using probabilistic fracture mechanics (PFM) analyses. The PFM results for crack growth were used to construct transition matrices for a discrete-time Markov process model, which in turn was applied to examine the effects of various inspection strategies on the failure probabilities and risks. The applicability of the developed quantitative risk matrix approach was examined as a pilot study performed to the Shut-down cooling piping system 321 in NPP unit OL1 of Teollisuuden Voima Oy (TVO). The analysed degradation mechanisms were stress corrosion cracking (SCC) and thermal fatigue induced cracking (in the mixing points). Here a new and rather straightforward approach was developed to model thermal fatigue induced cracking, which degradation mechanism is much more difficult to model than SCC. This study further demonstrated the usefulness of Markov analysis procedure development by VTT in RI-ISI applications. The most important results are the quantified comparisons of different inspections strategies. It was shown in this study that Markov models are useful for this purpose, when combined with PFM analyses. While the numerical results could benefit from further considerations of inspection reliability, this does not affect the feasibility of the method itself. The approach can be used to identify an optimal inspection strategy for achieving a balanced risk profile of piping segments.
Visa mer

Organisationer och upphovspersoner

Publikationstyp

Publikationsform

Separat verk

Målgrupp

Facklig

UKM:s publikationstyp

D4 Publicerad utvecklings- eller forskningsrapport eller -utredning

Publikationskanalens uppgifter

Journal

VTT Tiedotteita - Meddelanden - Research Notes

Förläggare

VTT Technical Research Centre of Finland

Nummer

2382

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Licens för förläggarens version

Annan licens

Parallellsparad

Nej

Övriga uppgifter

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Nej