System-level design and configuration management for run-time reconfigurable devices: Dissertation
Publiceringsår
2007
Upphovspersoner
Qu, Yang
Abstrakt
Dynamically reconfigurable hardware (DRHW) not only has high silicon reusability, but it can also deliver high performance for computation-intensive tasks. Advanced features such as run-time reconfiguration (RTR) allow multiple tasks to be mapped onto the same device either simultaneously or multiplexed in time domain. This new type of computing element also brings new challenges in the design process. Design supports at the system level are needed. In addition, the configuration latency and the configuration energy involved in each reconfiguration process can largely degrade the system performance. Approaches to efficiently manage the configuration processes are needed in order to effectively reduce its negative impacts. In this thesis, system-level supports for design of DRHW and various configuration management approaches for reducing the impact of configuration overhead are presented. Our system-level design supports are based on the SystemC environment. An estimation technique for system partitioning and a DRHW modeling technique are developed. The main idea is to help designers in the early design phase to evaluate the benefit of moving some components from fixed hardware implementation to DRHW. The supports have been applied in a WCDMA case study. In order to efficiently apply the multi-tasking feature of DRHW, we have developed three static task scheduling techniques and a run-time scheduling technique. The static schedulers include a list-based heuristic approach, an optimal approach based on constraint programming and a guided random search approach using a genetic algorithm. They are evaluated using both random tasks and real applications. The run-time scheduling uses a novel configuration locking technique. The idea is to dynamically track the task status and lock the most frequently used tasks on DRHW in order to reduce the number of reconfigurations. In addition, we present two novel techniques to reduce the configuration overhead. The first is configuration parallelism. Its idea is to enable tasks to be loaded in parallel in order to better exploit their parallelism. The second is dynamic voltage scaling. The idea is to apply low supply voltage in reconfiguration process when possible in order to reduce the configuration energy.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Separat verk
Målgrupp
Vetenskaplig
UKM:s publikationstyp
G4 Monografiavhandling
Publikationskanalens uppgifter
Journal
VTT Publications
Förläggare
VTT Technical Research Centre of Finland
Nummer
659
ISSN
ISBN
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Licens för förläggarens version
Annan licens
Parallellsparad
Nej
Övriga uppgifter
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Nej