undefined

Disposable bag bioreactor for plant cell and tissue cultures

Publiceringsår

2007

Upphovspersoner

Cuperus, S.; Eibl, R.; Rischer, Heiko; Oksman-Caldentey, Kirsi-Marja; Cusidó, R. M.; Pinol, M. T.; Eibl, D.

Abstrakt

The superiority of low-cost and disposable bioreactors with a gas-permeable cultivation bag of plastic film was effectively proven in a number of plant cell cultivations. The single-use cultivation bags are partially filled with medium, inoculated with cells, and discarded after harvest. This makes cleaning and sterilization in place unnecessary and guarantees high flexibility as well as process security with contamination levels below 1%. The BioWave reactor being the first mechanically driven, scalable bag reactor has a leading position among disposable bioreactors. Due to the rocking movement of the platform the surface of the medium is continuously renewed and bubble free surface aeration takes place. In the BioWave we found that the modified Reynolds number, the mixing time, the residence time distribution, the oxygen transfer efficiency and the specific power input is dependent of the rocking angle, the rocking rate, the culture bag type (CultiBag) and its geometry, as well as the filling level. Mixing times between 10 and 1400 s were determined. Experiments which focused on residence time distribution have demonstrated that a continuously operating BioWave in perfusion mode can be described by the ideally mixed stirred tank model. Oxygen transfer coefficients achieved in the BioWave reached comparable or even higher values than those which have been reported for stirred, bubble-free aerated or surface aerated bioreactors. Moreover, our studies reveal the potential of the BioWave for cultivating tobacco, grape, apple and yew suspension cell cultures as well as hairy root cultures of devil's claw, Egyptian henbane and Asian ginseng. We worked with culture volumes from 0.4 to 10 L (suspension cultures) and 0.5 to 5 L (hairy root cultures). For secondary metabolite-producing or protein-expressing plant suspension cells, we achieved maximum biomass productivities of 40 g fw L-1 d-1 and excellent doubling times of 2 days. Finally, the paclitaxel productivity accomplished in BioWave with immobilized Taxus suspension cells is one of the highest reported so far by academic researchers for Taxus species cultures in bioreactors. Encouraging results were also obtained for hairy roots cultivated in ebb-and-flow mode. We regularly achieved biomass productivities and product yields of specific hairy root clones in the BioWave operating with a 2 L CultiBag specific which were two to three times higher than in tested spray reactors.
Visa mer

Organisationer och upphovspersoner

Teknologiska forskningscentralen VTT Ab

Rischer Heiko Orcid -palvelun logo

Oksman-Caldentey Kirsi-Marja Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Konferens

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Inte kollegialt utvärderad

UKM:s publikationstyp

B3 Icke-referentgranskad artikel i konferenspublikation

Publikationskanalens uppgifter

Journal

VTT Symposium

Konferens

PSE Congress: Plants for Human Health in the Post-Genome Era

Förläggare

VTT Technical Research Centre of Finland

Nummer

249

Artikelnummer

C11

Sidor

97-97

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Licens för förläggarens version

Annan licens

Parallellsparad

Nej

Övriga uppgifter

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Nej