Methods for the Classification of Biosignals Applied to the Detection of Epileptiform Waveforms and to the Recognition of Physical Activity: Dissertation
Publiceringsår
2009
Upphovspersoner
Ermes, Miikka
Abstrakt
Biosignals are such signals that quantify the physiological processes of a living organism. Classification of biosignals aims at inferring the physiological condition of the organism based on the biosignals obtained from it. In this thesis, the classifications of two biosignals originating from the human body are studied in detail: the electroencephalogram (EEG) and acceleration signals recorded from body-worn sensors (body accelerometry). EEG quantifies the electrical activity of the brain. In this thesis, EEG recorded in hospital operating room and intensive care unit environments is classified to detect epileptiform brain activity which is a potentially brain-damaging phenomenon. Wavelet subband entropy of EEG is shown to be statistically associated with epileptiform activity both in operating room patients under sevoflurane-induced anesthesia and in intensive care unit patients resuscitated after cardiac arrest. The results support the hypothesis that epileptiform activity can be continuously monitored in both clinical settings. Body accelerometry quantifies the movements of the human body with body-worn sensors. In this thesis, body accelerometry is classified for activity recognition purposes, i.e. the purpose is to detect the type of physical activity of the subject from the body acceleration signals. State-of-the-art offline classification results are obtained in two studies. In addition, conversion of the presented offline activity classification algorithms to an online version is demonstrated. The results confirm that multiple classes of daily physical activities and sports can be reliably recognized with body accelerometry.
Visa merOrganisationer och upphovspersoner
Teknologiska forskningscentralen VTT Ab
Ermes Miikka
Publikationstyp
Publikationsform
Separat verk
Målgrupp
Vetenskaplig
UKM:s publikationstyp
G5 Artikelavhandling
Publikationskanalens uppgifter
Journal
VTT Publications
Förläggare
VTT Technical Research Centre of Finland
Nummer
707
ISSN
ISBN
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Licens för förläggarens version
Annan licens
Parallellsparad
Nej
Övriga uppgifter
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object]
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Nej