Thermal Properties of Nanocrystalline Silicon Nanobeams
Publiceringsår
2022
Upphovspersoner
Maire, Jeremie; Chávez-Ángel, Emigdio; Arregui, Guillermo; Colombano, Martin F.; Capuj, Nestor E.; Griol, Amadeu; Martínez, Alejandro; Navarro-Urrios, Daniel; Ahopelto, Jouni; Sotomayor-Torres, Clivia M.
Abstrakt
<p>Controlling thermal energy transfer at the nanoscale and thermal properties has become critically important in many applications since it often limits device performance. In this study, the effects on thermal conductivity arising from the nanoscale structure of free-standing nanocrystalline silicon films and the increasing surface-to-volume ratio when fabricated into suspended optomechanical nanobeams are studied. Thermal transport and elucidate the relative impact of different grain size distributions and geometrical dimensions on thermal conductivity are characterized. A micro time-domain thermoreflectance method to study free-standing nanocrystalline silicon films and find a drastic reduction in the thermal conductivity, down to values below 10 W m<sup>–1</sup> K<sup>–1</sup> is used, with a stronger decrease for smaller grains. In optomechanical nanostructures, this effect is smaller than in membranes due to the competition of surface scattering in decreasing thermal conductivity. Finally, a novel versatile contactless characterization technique that can be adapted to any structure supporting a thermally shifted optical resonance is introduced. The thermal conductivity data agrees quantitatively with the thermoreflectance measurements. This study opens the way to a more generalized thermal characterization of optomechanical cavities and to create hot-spots with engineered shapes at the desired position in the structures as a means to study thermal transport in coupled photon-phonon structures.</p>
Visa merOrganisationer och upphovspersoner
Teknologiska forskningscentralen VTT Ab
Ahopelto Jouni
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal
Volym
32
Nummer
4
Artikelnummer
2105767
ISSN
Publikationsforum
Publikationsforumsnivå
3
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Licens för förläggarens version
CC BY
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Fysik; Kemi; Materialteknik; Nanoteknologi
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1002/adfm.202105767
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja