Lightweight adaptation to situational changes in classifiers of multimodal human data multimodal human data: Dissertation
Publiceringsår
2016
Upphovspersoner
Vildjiounaite, Elena
Abstrakt
Intelligent computer applications need to adapt their behaviour to contexts and users, but conventional methods to train multimodal classifiers do not suit to this purpose because they require acquiring large sets of labelled data for each situation. Due to large variety of usage contexts of personal applications, no developer can predict all these situations, to say nothing of collecting adequate training databases for them. Hence personal applications require new methods for adapting to changing runtime contexts. As runtime adaptation largely relies on interaction with end users, these methods should be fairly lightweight with respect to standard ones, i.e. they should require much less domain knowledge and explicitly acquired data.This thesis introduces lightweight solutions for adapting reasoning models to situations at runtime, identifies important context and application characteristics and provides guidelines for considering these factors in adaptation design. The proposed solutions have been validated experimentally with realistic data sets, and the results have confirmed that they considerably reduce the dependence of context- and user-adaptive classifiers on domain knowledge and explicit interaction efforts. Studies with personal assistive applications have also demonstrated that users can accept the proposed lightweight adaptation even when its accuracy is relatively low.
Visa merOrganisationer och upphovspersoner
Teknologiska forskningscentralen VTT Ab
Vildjiounaite Elena
Publikationstyp
Publikationsform
Separat verk
Målgrupp
Vetenskaplig
UKM:s publikationstyp
G5 Artikelavhandling
Publikationskanalens uppgifter
Journal/Serie
VTT Science
Förläggare
VTT Technical Research Centre of Finland
Nummer
125
ISSN
ISBN
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Licens för förläggarens version
Annan licens
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
El-, automations- och telekommunikationsteknik, elektronik
Nyckelord
[object Object],[object Object],[object Object]
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja