Automatic Cloud Detection Method Based on Generative Adversarial Networks in Remote Sensing Images
Publiceringsår
2020
Upphovspersoner
Li, Jun; Wu, Zhaocong; Hu, Zhongwen; Zhang, Yi; Molinier, Matthieu
Abstrakt
Clouds in optical remote sensing images seriously affect the visibility of background pixels and greatly reduce the availability of images. It is necessary to detect clouds before processing images. In this paper, a novel cloud detection method based on attentive generative adversarial network (Auto-GAN) is proposed for cloud detection. Our main idea is to inject visual attention into the domain transformation to detect clouds automatically. First, we use a discriminator (D) to distinguish between cloudy and cloud free images. Then, a segmentation network is used to detect the difference between cloudy and cloud-free images (i.e. clouds). Last, a generator (G) is used to fill in the different regions in cloud image in order to confuse the discriminator. Auto-GAN only requires images and their labels (1 for a cloud-free image, 0 for a cloudy image) in the training phase which is more time-saving to acquire than existing methods based on CNNs that require pixel-level labels. Auto-GAN is applied to cloud detection in Sentinel-2A Level 1C imagery. The results indicate that Auto-GAN method performs well in cloud detection over different land surfaces.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Konferens
Artikelstyp
Annan artikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A4 Artikel i en konferenspublikationPublikationskanalens uppgifter
Volym
5
Nummer
2
Sidor
885-892
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Licens för förläggarens version
CC BY
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Rymdvetenskap och astronomi; Miljövetenskap
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object]
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.5194/isprs-annals-V-2-2020-885-2020
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja