Auto-calibration of depth camera networks for people tracking
Publiceringsår
2019
Upphovspersoner
Korkalo, Otto; Tikkanen, Tommi; Kemppi, Paul; Honkamaa, Petri
Abstrakt
<p>We address the problem of calibrating an embedded depth camera network designed for people tracking purposes. In our system, the nodes of the network are responsible for detecting the people moving in their view, and sending the observations to a centralized server for data fusion and tracking. We employ a plan-view approach where the depth camera views are transformed to top-view height maps where people are observed. As the server transforms the observations to a global plan-view coordinate system, accurate geometric calibration of the sensors has to be performed. Our main contribution is an auto-calibration method for such depth camera networks. In our approach, the sensor network topology and the initial 2D rigid transformations that map the observations to the global frame are determined using observations only. To distribute the errors in the initial calibration, the transformation parameters and the estimated positions of people are refined using a global optimization routine. To overcome inaccurate depth camera parameters, we re-calibrate the sensors using more flexible transformations, and experiment with similarity, affine, homography and thin-plate spline mappings. We evaluate the robustness, accuracy and precision of the approach using several real-life data sets, and compare the results to a checkerboard-based calibration method as well as to the ground truth trajectories collected with a mobile robot.</p>
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal
Volym
30
Sidor
671-688
ISSN
Publikationsforum
Publikationsforumsnivå
2
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Licens för förläggarens version
CC BY
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap; El-, automations- och telekommunikationsteknik, elektronik
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object]
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
DOI
10.1007/s00138-019-01021-z
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja