undefined

Auto-calibration of depth camera networks for people tracking

Publiceringsår

2019

Upphovspersoner

Korkalo, Otto; Tikkanen, Tommi; Kemppi, Paul; Honkamaa, Petri

Abstrakt

<p>We address the problem of calibrating an embedded depth camera network designed for people tracking purposes. In our system, the nodes of the network are responsible for detecting the people moving in their view, and sending the observations to a centralized server for data fusion and tracking. We employ a plan-view approach where the depth camera views are transformed to top-view height maps where people are observed. As the server transforms the observations to a global plan-view coordinate system, accurate geometric calibration of the sensors has to be performed. Our main contribution is an auto-calibration method for such depth camera networks. In our approach, the sensor network topology and the initial 2D rigid transformations that map the observations to the global frame are determined using observations only. To distribute the errors in the initial calibration, the transformation parameters and the estimated positions of people are refined using a global optimization routine. To overcome inaccurate depth camera parameters, we re-calibrate the sensors using more flexible transformations, and experiment with similarity, affine, homography and thin-plate spline mappings. We evaluate the robustness, accuracy and precision of the approach using several real-life data sets, and compare the results to a checkerboard-based calibration method as well as to the ground truth trajectories collected with a mobile robot.</p>
Visa mer

Organisationer och upphovspersoner

Teknologiska forskningscentralen VTT Ab

Korkalo Otto

Kemppi Paul

Honkamaa Petri

Tikkanen Tommi

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

30

Sidor

671-688

Publikationsforum

62832

Publikationsforumsnivå

2

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Licens för förläggarens version

CC BY

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; El-, automations- och telekommunikationsteknik, elektronik

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object]

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1007/s00138-019-01021-z

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja