undefined

Enhancing Lignin-Carbohydrate Complexes Production and Properties With Machine Learning

Publiceringsår

2024

Upphovspersoner

Diment, Daryna; Löfgren, Joakim; Alopaeus, Marie; Stosiek, Matthias; Cho, MiJung; Xu, Chunlin; Hummel, Michael; Rigo, Davide; Rinke, Patrick; Balakshin, Mikhail

Abstrakt

Abstract Lignin-carbohydrate complexes (LCCs) present a unique opportunity for harnessing the synergy between lignin and carbohydrates for high-value product development. However, producing LCCs in high yields remains a significant challenge. In this study, we address this challenge with a novel approach for the targeted production of LCCs. We optimized the AquaSolv Omni (AqSO) biorefinery for the synthesis of LCCs with high carbohydrate content (up to 60/100?Ar) and high yields (up to 15?wt?%) by employing machine learning (ML). Our method significantly improves the yield of LCCs compared to conventional procedures, such as ball milling and enzymatic hydrolysis. The ML approach was pivotal in tuning the biorefinery to achieve the best performance with a limited number of experimental trials. Specifically, we utilized Bayesian Optimization to iteratively gather data and examine the effects of key processing conditions?temperature, process severity, and liquid-to-solid ratio?on yield and carbohydrate content. Through Pareto front analysis, we identified optimal trade-offs between LCC yield and carbohydrate content, discovering extensive regions of processing conditions that produce LCCs with yields of 8?15?wt?% and carbohydrate contents ranging from 10?40/100?Ar. To assess the potential of these LCCs for high-value applications, we measured their glass transition temperature (Tg), surface tension, and antioxidant activity. Notably, we found that LCCs with high carbohydrate content generally exhibit low Tg and surface tension. Our biorefinery concept, augmented by ML-guided optimization, represents a significant step toward scalable production of LCCs with tailored properties.
Visa mer

Organisationer och upphovspersoner

Aalto-universitetet

Diment Daryna Orcid -palvelun logo

Rigo Davide

Löfgren Joakim

Stosiek Matthias Orcid -palvelun logo

Hummel Michael Orcid -palvelun logo

Cho Mijung

Balakshin Mikhail Orcid -palvelun logo

Rinke Patrick Orcid -palvelun logo

Åbo Akademi

Xu Chunlin Orcid -palvelun logo

Alopaeus Marie

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Journal/Serie

ChemSusChem

Förläggare

Wiley

Volym

18

Nummer

8

Artikelnummer

e202401711

Publikationsforum

53354

Publikationsforumsnivå

2

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Fysik; Kemi; Teknisk kemi, kemisk processteknik; Materialteknik

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1002/cssc.202401711

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja