undefined

Revealing the influence of semantic similarity on survey responses: A synthetic data generation approach

Publiceringsår

2025

Upphovspersoner

Lehtonen, Esko; Buder-Grondahl, Tommi; Nordhoff, Sina

Abstrakt

<p>Questionnaires are essential for measuring self-reported attitudes, beliefs, and behaviour in many research fields. Semantic similarity of the questions is recognized as a source of covariance in the human data, implying that response patterns partly arise from the questionnaire itself. A practical method to assess the influence of semantic similarity could significantly facilitate the design of questionnaires and the interpretation of their results. The current study presents a novel method for estimating the influence of semantic similarity for questionnaires with Likert-scale responses. The method represents responses as natural language sentences combining the statement and the response option and uses the Sentence-BERT algorithm to estimate a semantic similarity matrix between them. Synthetic response data are generated using the semantic similarity matrix and a noise parameter as input. Synthetic data can then be analysed using the same tools as human survey data, making the comparison straightforward. The method was tested with a questionnaire measuring the acceptance of automated driving. Synthetic data explained 40correlations in the human response data. This means that semantic similarity substantially influenced responses. Using synthetic data, it was possible to identify the same factor structure as in the human data and to identify relationships between factors that might have been inflated by semantic similarity. Semantically generated synthetic data could help in designing multi-factor questionnaires and correctly interpreting the found relationships between factors.</p>
Visa mer

Organisationer och upphovspersoner

Helsingfors universitet

Lehtonen Esko

Buder-Grondahl Tommi

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Moderpublikationens namn

IEEE Access

Volym

13

Sidor

40285-40301

Publikationsforum

78297

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Parallellsparad

Ja

Parallellagringens licens

CC BY

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; El-, automations- och telekommunikationsteknik, elektronik; Språkvetenskaper

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Förenta staterna (USA)

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1109/ACCESS.2025.3546565

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja