Revealing the influence of semantic similarity on survey responses: A synthetic data generation approach
Publiceringsår
2025
Upphovspersoner
Lehtonen, Esko; Buder-Grondahl, Tommi; Nordhoff, Sina
Abstrakt
<p>Questionnaires are essential for measuring self-reported attitudes, beliefs, and behaviour in many research fields. Semantic similarity of the questions is recognized as a source of covariance in the human data, implying that response patterns partly arise from the questionnaire itself. A practical method to assess the influence of semantic similarity could significantly facilitate the design of questionnaires and the interpretation of their results. The current study presents a novel method for estimating the influence of semantic similarity for questionnaires with Likert-scale responses. The method represents responses as natural language sentences combining the statement and the response option and uses the Sentence-BERT algorithm to estimate a semantic similarity matrix between them. Synthetic response data are generated using the semantic similarity matrix and a noise parameter as input. Synthetic data can then be analysed using the same tools as human survey data, making the comparison straightforward. The method was tested with a questionnaire measuring the acceptance of automated driving. Synthetic data explained 40correlations in the human response data. This means that semantic similarity substantially influenced responses. Using synthetic data, it was possible to identify the same factor structure as in the human data and to identify relationships between factors that might have been inflated by semantic similarity. Semantically generated synthetic data could help in designing multi-factor questionnaires and correctly interpreting the found relationships between factors.</p>
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal
Moderpublikationens namn
Volym
13
Sidor
40285-40301
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Parallellsparad
Ja
Parallellagringens licens
CC BY
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap; El-, automations- och telekommunikationsteknik, elektronik; Språkvetenskaper
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object]
Publiceringsland
Förenta staterna (USA)
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1109/ACCESS.2025.3546565
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja