Data assimilation of forest status using Sentinel-2 data and a process-based model
Publiceringsår
2025
Upphovspersoner
Minunno, Francesco; Miettinen, Jukka; Tian, Xianglin; Häme, Tuomas; Holder, Jonathan; Koivu, Kristiina; Mäkelä, Annikki
Abstrakt
<p>Spatially explicit information of forest status is important for obtaining more accurate predictions of C balance. Spatially explicit predictions of forest characteristics at high resolution can be obtained by Earth Observations (EO), but the accuracy of satellite-based predictions may vary significantly. Modern computational techniques, such as data assimilation (DA), allow us to improve the accuracy of predictions considering measurement uncertainties. The main objective of this work was to develop two DA frameworks that combine repeated satellite measurements (Sentinel-2) and process-based forest model predictions. For the study three tiles of 100 × 100 km<sup>2</sup> were considered, in boreal forests. One framework was used to predict forest structural variables and tree species, while the other was used to quantify the site fertility class. The reliability of the frameworks was tested using field measurements. By means of DA we combined model and satellite-based predictions improving the reliability and robustness of forest monitoring. The DA frameworks reduced the uncertainty associated with forest structural variables and mitigated the effects of biased Earth Observation predictions when errors occurred. For one tile, Sentinel-2 prediction for 2019 (s2019) of stem diameter (D) and height (H) was biased, but the errors were reduced by the DA estimation (DA2019). The root mean squared errors were reduced from 5.8 cm (s2019) to 4.5 cm (DA2019) and from 5.1 m (s2019) to 3.3 m (DA2019) for D (sd = 4.33 cm) and H (sd = 3.43 m), respectively. For the site fertility class estimation DA was less effective, because forest growth rate is low in boreal environments; long term analysis might be more informative. We showed here the potential of the DA framework implemented using medium resolution remote sensing data and a process-based forest model. Further testing of the frameworks using more RS-data acquisitions is desirable and the DA process would benefit if the error of satellite-based predictions were reduced.</p>
Visa merOrganisationer och upphovspersoner
Helsingfors universitet
Mäkelä Annikki
Minunno Francesco
Holder Jonathan
Koivu Kristiina
Tian Xianglin
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Moderpublikationens namn
Volym
363
Artikelnummer
110436
ISSN
Publikationsforum
Publikationsforumsnivå
3
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Licens för förläggarens version
CC BY
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap; El-, automations- och telekommunikationsteknik, elektronik; Skogsvetenskap
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publiceringsland
Nederländerna
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1016/j.agrformet.2025.110436
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja