undefined

Artificial Neural Dynamics for Portfolio Allocation: An Optimization Perspective

Publiceringsår

2024

Upphovspersoner

Cao, Xinwei; Yang, Yiguo; Li, Shuai; Stanimirović, Predrag S.; Katsikis, Vasilios N.

Abstrakt

<p>Real-time high-frequency trading poses a significant challenge to the classical portfolio allocation problem, demanding rapid computational efficiency for constructing Markowitz model-based portfolios. Building on the principles of arbitrage pricing theory (APT), this study introduces a dynamic neural network model aimed at minimizing investment risk, optimizing portfolio allocation within predefined constraints, and maximizing returns. First, a convex optimization objective function incorporating risk constraints is formulated based on APT principles. This is followed by the introduction of a novel dynamic neural network model designed to solve the convex optimization problem, accompanied by comprehensive theoretical analysis and rigorous proofs. The study uses two distinct datasets sourced from Yahoo Finance, consisting of 30 selected stocks, covering a span of 250 valid trading days to validate the proposed methodology. The results of 30 different stock market scenario experiments indicate that, when the upper limit for investment risk is set at 3.285 × 10<sup>−4</sup>, the expected maximum investment return exceeds the Dow Jones Industrial Average (DJIA) index by 16.2816%. These empirical findings highlight the viability, stability, and efficacy of the proposed approach and framework, demonstrating its potential applicability for real-time, high-frequency trading scenarios. Furthermore, the outcomes suggest policy implications for risk management and portfolio optimization in dynamic financial environments.</p>
Visa mer

Organisationer och upphovspersoner

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Förläggare

IEEE

Volym

2025; 55

Nummer

3

Sidor

1960-1971

Publikationsforum

57581

Publikationsforumsnivå

2

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Licens för förläggarens version

CC BY

Parallellsparad

Ja

Parallellagringens licens

CC BY

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; El-, automations- och telekommunikationsteknik, elektronik

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Förenta staterna (USA)

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1109/TSMC.2024.3514919

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja