Stability Estimates for the Inverse Fractional Conductivity Problem
Publiceringsår
2024
Upphovspersoner
Covi, Giovanni; Railo, Jesse; Tyni, Teemu; Zimmermann, Philipp
Abstrakt
We study the stability of an inverse problem for the fractional conductivity equation on bounded smooth domains. We obtain a logarithmic stability estimate for the inverse problem under suitable a priori bounds on the globally defined conductivities. The argument has three main ingredients: 1. the logarithmic stability of the related inverse problem for the fractional Schrödinger equation by Rüland and Salo; 2. the Lipschitz stability of the exterior determination problem; 3. utilizing and identifying nonlocal analogies of Alessandrini’s work on the stability of the classical Calderón problem. The main contribution of the article is the resolution of the technical difficulties related to the last mentioned step. Furthermore, we show the optimality of the logarithmic stability estimates, following the earlier works by Mandache on the instability of the inverse conductivity problem, and by Rüland and Salo on the analogous problem for the fractional Schrödinger equation.
Visa merOrganisationer och upphovspersoner
Uleåborgs universitet
Tyni Teemu
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Nummer
2
Sidor
2456-2487
ISSN
Publikationsforum
Publikationsforumsnivå
3
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Parallellsparad
Ja
Parallellagringens licens
CC BY
Övriga uppgifter
Vetenskapsområden
Matematik
Nyckelord
[object Object],[object Object],[object Object],[object Object]
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1137/22M1533542
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja