undefined

Forest Area and Structural Variable Estimation in Boreal Forest Using Suomi NPP VIIRS Data and a Sample from VHR Imagery

Publiceringsår

2023

Upphovspersoner

Häme, Tuomas; Astola, Heikki; Kilpi, Jorma; Rauste, Yrjö; Sirro, Laura; Mutanen, Teemu; Parmes, Eija; Rasinmäki, Jussi; Imangholiloo, Mohammad

Abstrakt

Our objective was to develop a method for the assessment of forest area and structural variables for cases in which the availability of representative ground reference data is poor and these data are not collected from the whole area of interest. We implemented two independent approaches to the estimation of the forest variables of a European boreal forest: (i) the computation of wall-to-wall estimates using moderate- to low-resolution VIIRS imagery from the Suomi NPP mission; and (ii) the visual interpretation of plots of samples from very high resolution (VHR) satellite data obtained via a two-stage design. Our focus was on the statistical comparison of forest resources at a country or larger level. The study area was boreal forest ranging from Norway to the Ural Mountains in Russia. We computed a seamless mosaic from 111 VIIRS images. From the mosaic, we computed predictions for the forest area, growing stock volume, height of the dominating tree layer, proportion of conifers and broadleaved trees, site fertility class, and leaf area index. The reference data for the VIIRS imagery were national forest inventory (NFI)-based raster maps from Finland. The first stage sample of VHR data included 42 images; of these, a second stage sample of 2690 plots was visually interpreted for the same variables. The forest area prediction from VIIRS for the whole study area was 1.2% higher than the VHR-based result. All other structural variable predictions using VIIRS fitted within the 95% confidence intervals computed from the VHR sample except for estimates of the main tree species groups, which were outside the limits. A comparison of VIIRS-based forest area estimates using Finnish and Swedish NFI data indicated overestimations of 10.0% points and 4.6% points, whereas the total growing stock volumes were overestimated by 8% and underestimated by 3.4%, respectively. The correlation coefficients between the VIIRS and VHR image predictions at the 42 VHR image locations varied from 0.70 to 0.85. The VIIRS maps strongly averaged the local predictions due to their coarse spatial resolutions. Based on our findings, the approach using two independent estimations yielded similar figures for the central forest variables for the European boreal forest. A model computed using reference data from a small part of the area of interest can provide satisfactory predictions for a much larger area with a similar biome. Therefore, our concept is applicable to the estimation and overall mapping of a forest area and central structural variables at regional to national levels.
Visa mer

Organisationer och upphovspersoner

Helsingfors universitet

Imangholiloo Mohammad

Teknologiska forskningscentralen VTT Ab

Parmes Eija

Astola Heikki

Kilpi Jorma Orcid -palvelun logo

Sirro Laura

Mutanen Teemu

Häme Tuomas

Rauste Yrjö Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Journal/Serie

Remote sensing

Moderpublikationens namn

Remote Sensing

Volym

15

Nummer

12

Publikationsforum

71359

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Matematik; Fysik; Skogsvetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Schweiz

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Ja

DOI

10.3390/rs15123029

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja