undefined

DAPlankton: Benchmark Dataset For Multi-Instrument Plankton Recognition Via Fine-Grained Domain Adaptation

Publiceringsår

2024

Upphovspersoner

Batrakhanov, Daniel; Eerola, Tuomas; Kraft, Kaisa; Haraguchi, Lumi; Lensu, Lasse; Suikkanen, Sanna; Camarena-Gómez, María Teresa; Seppälä, Jukka; Kälviäinen, Heikki

Abstrakt

Plankton recognition provides novel possibilities to study various environmental aspects and an interesting real-world context to develop domain adaptation (DA) methods. Different imaging instruments cause domain shift between datasets hampering the development of general plankton recognition methods. A promising remedy for this is DA allowing to adapt a model trained on one instrument to other instruments. In this paper, we present a new DA dataset called DAPlankton which consists of phytoplankton images obtained with different instruments. Phytoplankton provides a challenging DA problem due to the fine-grained nature of the task and high class imbalance in real-world datasets. DAPlankton consists of two subsets. DAPlankton_LAB contains images of cultured phytoplankton providing a balanced dataset with minimal label uncertainty. DAPlankton_SEA consists of images collected from the Baltic Sea providing challenging real-world data with large intra-class variance and class imbalance. We further present a benchmark comparison of three widely used DA methods.
Visa mer

Organisationer och upphovspersoner

Finlands miljöcentral

Suikkanen Sanna Orcid -palvelun logo

Seppälä Jukka Orcid -palvelun logo

Kraft Kaisa

Haraguchi Lumi Orcid -palvelun logo

Lappeenrannan–Lahden teknillinen yliopisto LUT

Batrakhanov Daniel

Kälviäinen Heikki Orcid -palvelun logo

Lensu Lasse Orcid -palvelun logo

Eerola Tuomas Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Konferens

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A4 Artikel i en konferenspublikation

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; Miljöteknik; Geovetenskaper

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1109/icip51287.2024.10648228

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja