undefined

Leveraging enhanced egret swarm optimization algorithm and artificial intelligence-driven prompt strategies for portfolio selection

Publiceringsår

2024

Upphovspersoner

Huang, Zhendai; Zhang, Zhen; Hua, Cheng; Liao, Bolin; Li, Shuai

Abstrakt

<p>In the financial field, constructing efficient investment portfolios is a focal point of research, encompassing asset selection and optimization of asset allocation. With the advancements in Large Language Models (LLMs), generative Artificial Intelligence (AI) tools have showcased capabilities never seen before. However, the black-box nature of these tools renders their outputs difficult to interpret directly, often necessitating iterative fine-tuning to align with users’ expected outcomes. This study presents a structured prompt framework specifically designed for stock selection, aiming to provide direct and interpretable stock-selecting tools for investors of various levels. By creating representative scenarios and combining them into different cases for experimentation, we can explore how the construction of prompts influences the responses generated by generative AI tools. Additionally, this paper proposes a novel algorithm that combines the Nonlinear-Activated Beetle Antennae Search strategy with the Egret Swarm Optimization Algorithm (NBESOA) to address the Mean-Variance Portfolio Selection problem with Transaction Costs and Cardinality Constraints (MVPS-TCCC), utilizing real stock market data to construct portfolios based on generative AI tools recommendations. Simulation results indicate that, compared to other algorithms, NBESOA prefers optimizing portfolio configurations to achieve the highest Sharpe Ratio with the strictest constraints, bringing the outcomes closer to the portfolio’s efficient frontier.</p>
Visa mer

Organisationer och upphovspersoner

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Förläggare

Springer

Artikelnummer

26681

Publikationsforum

71431

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Licens för förläggarens version

CC BY NC ND

Parallellsparad

Ja

Parallellagringens licens

CC BY NC ND

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; El-, automations- och telekommunikationsteknik, elektronik

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Förenade kungariket

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1038/s41598-024-77925-2

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja