Development of a New Non-Destructive Analysis Method in Cultural Heritage with Artificial Intelligence
Publiceringsår
2024
Upphovspersoner
Bilici Genc, Bengin; Bostanci, Erkan; Eskici, Bekir; Erten, Hakan; Caglar Eryurt, Berna; Acici, Koray; Ketenoglu, Didem; Asuroglu, Tunc
Abstrakt
Cultural assets are all movable and immovable assets that have been the subject of social life in historical periods, have unique scientific and cultural value, and are located above ground, underground or underwater. Today, the fact that most of the analyses conducted to understand the technologies of these assets require sampling and that non-destructive methods that allow analysis without taking samples are costly is a problem for cultural heritage workers. In this study, which was prepared to find solutions to national and international problems, it is aimed to develop a non-destructive, cost-minimizing and easy-to-use analysis method. Since this article aimed to develop methodology, the materials were prepared for preliminary research purposes. Therefore, it was limited to four primary colors. These four primary colors were red and yellow ochre, green earth, Egyptian blue and ultramarine blue. These pigments were used with different binders. The produced paints were photographed in natural and artificial light at different light intensities and brought to a 256 × 256 pixel size, and then trained on support vector machine, convolutional neural network, densely connected convolutional network, residual network 50 and visual geometry group 19 models. It was asked whether the trained VGG19 model could classify the paints used in archaeological and artistic works analyzed with instrumental methods in the literature with their real identities. As a result of the test, the model was able to classify paints in artworks from photographs non-destructively with a 99% success rate, similar to the result of the McNemar test.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal/Serie
Volym
13
Nummer
20
Artikelnummer
4039
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Licens för förläggarens version
CC BY
Parallellsparad
Ja
Parallellagringens licens
CC BY
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap; El-, automations- och telekommunikationsteknik, elektronik
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object]
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.3390/electronics13204039
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja