Artificial neural network assisted spectral scatterometry for grating quality control
Publiceringsår
2024
Upphovspersoner
Mattila, Aleksi; Nysten, Johan; Heikkinen, Ville; Kilpi, Jorma; Korpelainen, Virpi; Hansen, Poul-Erik; Karvinen, Petri; Kuittinen, Markku; Lassila, Antti
Abstrakt
Spectral scatterometry is a technique that allows rapid measurements of diffraction efficiencies of diffractive optical elements (DOEs). The analysis of such diffraction efficiencies has traditionally been laborious and time consuming. However, machine learning can be employed to aid in the analysis of measured diffraction efficiencies. In this paper we describe a novel system for providing measurements of multiple measurands rapidly and concurrently using a spectral scatterometer and an artificial neural network (ANN) which is trained utilising transfer learning. The ANN provides values for the pitch, height, and line widths of the DOEs. In addition, an uncertainty evaluation was performed. In the majority of the studied cases, the discrepancies between the values obtained using a scanning electron microscope (SEM) and artificial neural network assisted spectral scatterometer (ANNASS) for the grating parameters were below 5 nm. Furthermore, independent reference samples were used to perform a metrological validation. An expanded uncertainty (k = 2) of 5.3 nm was obtained from the uncertainty evaluation for the measurand height. The height value measurements performed employing ANNASS and SEM are demonstrated to be in agreement within this uncertainty.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Volym
35
Nummer
8
Artikelnummer
085025
ISSN
Publikationsforum
Publikationsforumsnivå
2
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Licens för förläggarens version
CC BY
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
El-, automations- och telekommunikationsteknik, elektronik
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object]
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1088/1361-6501/ad4e52
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja