MAMAF-Net: Motion-aware and multi-attention fusion network for stroke diagnosis
Publiceringsår
2024
Upphovspersoner
Degerli, Aysen; Jäkälä, Pekka; Pajula, Juha; Immonen, Milla; López, Miguel Bordallo
Abstrakt
<p>Stroke is a major cause of mortality and disability worldwide from which one in four people are in danger of incurring in their lifetime. The pre-hospital stroke assessment plays a vital role in identifying stroke patients accurately to accelerate further examination and treatment in hospitals. Accordingly, the National Institutes of Health Stroke Scale (NIHSS), Cincinnati Pre-hospital Stroke Scale (CPSS) and Face Arm Speed Time (F.A.S.T.) are globally known tests for stroke assessment. However, the validity of these tests is skeptical in the absence of neurologists and access to healthcare may be limited. Therefore, in this study, we propose a motion-aware and multi-attention fusion network (MAMAF-Net) that can detect stroke from multiple examination videos. Contrary to other studies on stroke detection from video analysis, our study for the first time collected a dataset encapsulating transient ischemic attack (TIA), stroke, and healthy controls, and proposes an end-to-end solution using multiple video recordings of each subject. The proposed MAMAF-Net consists of motion-aware modules to sense the mobility of patients, attention modules to fuse the multi-input video data, and 3D convolutional layers to perform diagnosis from the attention-based extracted features. Experimental results over the collected Stroke-data dataset show that the proposed MAMAF-Net achieves a successful detection of stroke with the highest levels of 93.62% sensitivity, 91.19% F1-Score, and 0.7472 Kappa measure in addition to 3.92% increase in the AUC score compared to state-of-the-art deep learning models.</p>
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal/Serie
Volym
95
Artikelnummer
106381
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Licens för förläggarens version
CC BY
Parallellsparad
Ja
Parallellagringens licens
CC BY
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap; Medicinsk teknik; Biomedicinska vetenskaper
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
DOI
10.1016/j.bspc.2024.106381
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja