undefined

MAMAF-Net: Motion-aware and multi-attention fusion network for stroke diagnosis

Publiceringsår

2024

Upphovspersoner

Degerli, Aysen; Jäkälä, Pekka; Pajula, Juha; Immonen, Milla; López, Miguel Bordallo

Abstrakt

<p>Stroke is a major cause of mortality and disability worldwide from which one in four people are in danger of incurring in their lifetime. The pre-hospital stroke assessment plays a vital role in identifying stroke patients accurately to accelerate further examination and treatment in hospitals. Accordingly, the National Institutes of Health Stroke Scale (NIHSS), Cincinnati Pre-hospital Stroke Scale (CPSS) and Face Arm Speed Time (F.A.S.T.) are globally known tests for stroke assessment. However, the validity of these tests is skeptical in the absence of neurologists and access to healthcare may be limited. Therefore, in this study, we propose a motion-aware and multi-attention fusion network (MAMAF-Net) that can detect stroke from multiple examination videos. Contrary to other studies on stroke detection from video analysis, our study for the first time collected a dataset encapsulating transient ischemic attack (TIA), stroke, and healthy controls, and proposes an end-to-end solution using multiple video recordings of each subject. The proposed MAMAF-Net consists of motion-aware modules to sense the mobility of patients, attention modules to fuse the multi-input video data, and 3D convolutional layers to perform diagnosis from the attention-based extracted features. Experimental results over the collected Stroke-data dataset show that the proposed MAMAF-Net achieves a successful detection of stroke with the highest levels of 93.62% sensitivity, 91.19% F1-Score, and 0.7472 Kappa measure in addition to 3.92% increase in the AUC score compared to state-of-the-art deep learning models.</p>
Visa mer

Organisationer och upphovspersoner

Östra Finlands universitet

Jäkälä Pekka Artti Orcid -palvelun logo

Uleåborgs universitet

Bordallo Lopez Miguel Orcid -palvelun logo

Teknologiska forskningscentralen VTT Ab

Degerli Aysen Orcid -palvelun logo

Pajula Juha Orcid -palvelun logo

López Miguel Bordallo Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

95

Artikelnummer

106381

Publikationsforum

52411

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Licens för förläggarens version

CC BY

Parallellsparad

Ja

Parallellagringens licens

CC BY

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; Medicinsk teknik; Biomedicinska vetenskaper

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1016/j.bspc.2024.106381

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja