undefined

Transformers for cardiac patient mortality risk prediction from heterogeneous electronic health records

Publiceringsår

2023

Upphovspersoner

Antikainen, Emmi; Linnosmaa, Joonas; Umer, Adil; Oksala, Niku; Eskola, Markku; van Gils, Mark; Hernesniemi, Jussi; Gabbouj, Moncef;

Abstrakt

With over 17 million annual deaths, cardiovascular diseases (CVDs) dominate the cause of death statistics. CVDs can deteriorate the quality of life drastically and even cause sudden death, all the while inducing massive healthcare costs. This work studied state-of-the-art deep learning techniques to predict increased risk of death in CVD patients, building on the electronic health records (EHR) of over 23,000 cardiac patients. Taking into account the usefulness of the prediction for chronic disease patients, a prediction period of six months was selected. Two major transformer models that rely on learning bidirectional dependencies in sequential data, BERT and XLNet, were trained and compared. To our knowledge, the presented work is the first to apply XLNet on EHR data to predict mortality. The patient histories were formulated as time series consisting of varying types of clinical events, thus enabling the model to learn increasingly complex temporal dependencies. BERT and XLNet achieved an average area under the receiver operating characteristic curve (AUC) of 75.5% and 76.0%, respectively. XLNet surpassed BERT in recall by 9.8%, suggesting that it captures more positive cases than BERT, which is the main focus of recent research on EHRs and transformers.
Visa mer

Organisationer och upphovspersoner

Teknologiska forskningscentralen VTT Ab

Umer Adil

Antikainen Emmi

Linnosmaa Joonas Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

13

Nummer

1

Artikelnummer

3517

Publikationsforum

71431

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Licens för förläggarens version

CC BY

Parallellsparad

Ja

Parallellagringens licens

CC BY

Publiceringsavgift för öppen tillgång €

2145

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; Biomedicinska vetenskaper; Allmänmedicin, inre medicin och annan klinisk medicin; Hälsovetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1038/s41598-023-30657-1

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja