Transformers for cardiac patient mortality risk prediction from heterogeneous electronic health records
Publiceringsår
2023
Upphovspersoner
Antikainen, Emmi; Linnosmaa, Joonas; Umer, Adil; Oksala, Niku; Eskola, Markku; van Gils, Mark; Hernesniemi, Jussi; Gabbouj, Moncef;
Abstrakt
With over 17 million annual deaths, cardiovascular diseases (CVDs) dominate the cause of death statistics. CVDs can deteriorate the quality of life drastically and even cause sudden death, all the while inducing massive healthcare costs. This work studied state-of-the-art deep learning techniques to predict increased risk of death in CVD patients, building on the electronic health records (EHR) of over 23,000 cardiac patients. Taking into account the usefulness of the prediction for chronic disease patients, a prediction period of six months was selected. Two major transformer models that rely on learning bidirectional dependencies in sequential data, BERT and XLNet, were trained and compared. To our knowledge, the presented work is the first to apply XLNet on EHR data to predict mortality. The patient histories were formulated as time series consisting of varying types of clinical events, thus enabling the model to learn increasingly complex temporal dependencies. BERT and XLNet achieved an average area under the receiver operating characteristic curve (AUC) of 75.5% and 76.0%, respectively. XLNet surpassed BERT in recall by 9.8%, suggesting that it captures more positive cases than BERT, which is the main focus of recent research on EHRs and transformers.
Visa merOrganisationer och upphovspersoner
Tammerfors universitet
Antikainen Emmi
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal
Volym
13
Nummer
1
Artikelnummer
3517
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Licens för förläggarens version
CC BY
Parallellsparad
Ja
Parallellagringens licens
CC BY
Publiceringsavgift för öppen tillgång €
2145
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap; Biomedicinska vetenskaper; Allmänmedicin, inre medicin och annan klinisk medicin; Hälsovetenskap
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
DOI
10.1038/s41598-023-30657-1
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja