Estimation of Unmeasurable Vibration of a Rotating Machine Using Kalman Filter
Publiceringsår
2022
Upphovspersoner
Neisi, Neda; Nieminen, Vesa; Kurvinen, Emil; Lämsä, Ville; Sopanen, Jussi
Abstrakt
Rotating machines are typically equipped with vibration sensors at the bearing location and the information from these sensors is used for condition monitoring. Installing additional sensors may not be possible due to limitations of the installation and cost. Thus, the internal condition of machines might be difficult to evaluate. This study presents a numerical and experimental study on the case of a rotor supported by four rolling element bearings (REBs). As such, the study resembles a complex real-life industrial multi-fault scenario: a lack of information, uncertainties, and nonlinearities increase the overall complexity of the system. The study provides a methodology for modeling and analyzing complicated systems without prior information. First, the unknown model parameters of the system are approximated using measurement data and the linearized model. Thereafter, the Unscented Kalman Filter (UKF) is applied to the estimation of the vibration characteristics in unmeasured locations. As a result, the estimation of unmeasured vibration characteristics has a reasonable agreement with the rotor whirling, and the estimated results are within a 95% confidence interval. The proposed methodology can be considered as a transfer learning method that can be further used in other identification problems in the field of rotating machinery.
Visa merOrganisationer och upphovspersoner
Uleåborgs universitet
Kurvinen Emil
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Licens för förläggarens version
CC BY
Parallellsparad
Ja
Parallellagringens licens
CC BY
Övriga uppgifter
Vetenskapsområden
Maskin- och produktionsteknik; Materialteknik
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object]
Publiceringsland
Schweiz
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
DOI
10.3390/machines10121116
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja