undefined

Mapping the sustainable development goals (SDGs) in science, technology and innovation: application of machine learning in SDG-oriented artefact detection

Publiceringsår

2022

Upphovspersoner

Hajikhani, Arash; Suominen, Arho

Abstrakt

<p>The sustainable development goals (SDGs) are a blueprint for achieving a better and more sustainable future for all by defining priorities and aspirations for 2030. This paper attempts to expand on the United Nations SDGs definition by leveraging the interrelationship between science and technology. We utilize SDG classification of scientific publications to compile a machine learning (ML) model to classify the SDG relevancy in patent documents, used as a proxy of technology development. The ML model was used to classify a sample of patent families registered in the European Patent Office (EPO). The analysis revealed the extent to which SDGs were addressed in patents. We also performed a case study to identify the offered extension of ML model detection regarding the SDG orientation of patents. In response to global goals and sustainable development initiatives, the findings can advance the identification challenges of science and technology artefacts. Furthermore, we offer input towards the alignment of R&amp;D efforts and patenting strategies as well as measurement and management of their contribution to the realization of SDGs.</p>
Visa mer

Organisationer och upphovspersoner

Tammerfors universitet

Suominen Arho

Teknologiska forskningscentralen VTT Ab

Hajikhani Arash Orcid -palvelun logo

Suominen Arho

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

127

Nummer

11

Sidor

6661–6693

Publikationsforum

66909

Publikationsforumsnivå

2

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; Företagsekonomi; Sociologi

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1007/s11192-022-04358-x

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja