Aggregated forecasting of the load control responses using a hybrid model that combines a physically based model with machine learning
Publiceringsår
2020
Upphovspersoner
Koponen, Pekka; Salmi, Tuukka; Evens, Corentin; Takala, Suvi; Hyttinen, Antti; Brester, Christina; Kolehmainen, Mikko; Niska, Harri
Abstrakt
<p>The value of active demand in the electricity and ancillary service markets depends very much on the predictability of its aggregated control responses. In this work, the authors study electrically heated small houses that have electrical heating with heat storage tanks and remote control via a smart metering system. They integrate a simple physically based model to a machine learning forecasting method thus combining the strengths of the component methods. Now a stacked boosters network, a new deep learning method, is applied and briefly compared with a support vector regression, an earlier machine learning model. The simple physically based model component models the thermal dynamics of the heat storage tank and the outdoor dependent heat demand of the house. Varying types of a heuristic market based dynamic load control were applied during the field trials that comprised an identification period (31 May 2012–31 May 2013) and a verification period (1 January 2015–31 December 2019). Each of the 727 houses was hourly metered and aggregated into two groups. The short-term forecast the power of these dynamically controlled groups. They summarise the results. The hybrid method outperformed its component methods.</p>
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Konferens
Artikelstyp
Annan artikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A4 Artikel i en konferenspublikationPublikationskanalens uppgifter
Journal
Moderpublikationens namn
Volym
2020
Nummer
1
Artikelnummer
105
Sidor
588-591
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Licens för förläggarens version
CC BY
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap; El-, automations- och telekommunikationsteknik, elektronik; Maskin- och produktionsteknik; Materialteknik
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Ja
DOI
10.1049/oap-cired.2021.0051
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja