undefined

Aggregated forecasting of the load control responses using a hybrid model that combines a physically based model with machine learning

Publiceringsår

2020

Upphovspersoner

Koponen, Pekka; Salmi, Tuukka; Evens, Corentin; Takala, Suvi; Hyttinen, Antti; Brester, Christina; Kolehmainen, Mikko; Niska, Harri

Abstrakt

<p>The value of active demand in the electricity and ancillary service markets depends very much on the predictability of its aggregated control responses. In this work, the authors study electrically heated small houses that have electrical heating with heat storage tanks and remote control via a smart metering system. They integrate a simple physically based model to a machine learning forecasting method thus combining the strengths of the component methods. Now a stacked boosters network, a new deep learning method, is applied and briefly compared with a support vector regression, an earlier machine learning model. The simple physically based model component models the thermal dynamics of the heat storage tank and the outdoor dependent heat demand of the house. Varying types of a heuristic market based dynamic load control were applied during the field trials that comprised an identification period (31 May 2012–31 May 2013) and a verification period (1 January 2015–31 December 2019). Each of the 727 houses was hourly metered and aggregated into two groups. The short-term forecast the power of these dynamically controlled groups. They summarise the results. The hybrid method outperformed its component methods.</p>
Visa mer

Organisationer och upphovspersoner

Teknologiska forskningscentralen VTT Ab

Evens Corentin

Koponen Pekka

Salmi Tuukka

Östra Finlands universitet

Brester Christina

Niska Harri

Kolehmainen Mikko

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Konferens

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A4 Artikel i en konferenspublikation

Publikationskanalens uppgifter

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Licens för förläggarens version

CC BY

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; El-, automations- och telekommunikationsteknik, elektronik; Maskin- och produktionsteknik; Materialteknik

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Ja

DOI

10.1049/oap-cired.2021.0051

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja