undefined

TanDEM-X multiparametric data features in sea ice classification over the Baltic sea

Publiceringsår

2020

Upphovspersoner

Marbouti, Marjan; Antropov, Oleg; Praks, Jaan; Eriksson, Patrick B.; Arabzadeh, Vahid; Rinne, Eero; Leppäranta, Matti

Abstrakt

<p>In this study, we assess the potential of X-band Interferometric Synthetic Aperture Radar imagery for automated classification of sea ice over the Baltic Sea. A bistatic SAR scene acquired by the TanDEM-X mission over the Bothnian Bay in March of 2012 was used in the analysis. Backscatter intensity, interferometric coherence magnitude, and interferometric phase have been used as informative features in several classification experiments. Various combinations of classification features were evaluated using Maximum likelihood (ML), Random Forests (RF) and Support Vector Machine (SVM) classifiers to achieve the best possible discrimination between open water and several sea ice types (undeformed ice, ridged ice, moderately deformed ice, brash ice, thick level ice, and new ice). Adding interferometric phase and coherence-magnitude to backscatter-intensity resulted in improved overall classification performance compared to using only backscatter-intensity. The RF algorithm appeared to be slightly superior to SVM and ML due to higher overall accuracies, however, at the expense of somewhat longer processing time. The best overall accuracy (OA) for three methodologies were achieved using combination of all tested features were 71.56, 72.93, and 72.91% for ML, RF and SVM classifiers, respectively. Compared to OAs of 62.28, 66.51, and 63.05% using only backscatter intensity, this indicates strong benefit of SAR interferometry in discriminating different types of sea ice. In contrast to several earlier studies, we were particularly able to successfully discriminate open water and new ice classes.</p>
Visa mer

Organisationer och upphovspersoner

Helsingfors universitet

Marbouti Marjan

Leppäranta Matti

Aalto-universitetet

Praks Jaan Orcid -palvelun logo

Arabzadeh Vahid Orcid -palvelun logo

Meteorologiska Institutet

Eriksson Patrick B. Orcid -palvelun logo

Rinne Eero Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Moderpublikationens namn

Geo-spatial information science

Volym

24

Nummer

2

Sidor

313-332

Publikationsforum

75907

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; Fysik; El-, automations- och telekommunikationsteknik, elektronik; Företagsekonomi; Geovetenskaper; Miljövetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1080/10095020.2020.1845574

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja