undefined

Detection of forest windstorm damages with multitemporal sar data—a case study: Finland

Publiceringsår

2021

Upphovspersoner

Tomppo, Erkki; Ronoud, Ghasem; Antropov, Oleg; Hytönen, Harri; Praks, Jaan

Abstrakt

<p>The purpose of this study was to develop methods to localize forest windstorm dam-ages, assess their severity and estimate the total damaged area using space-borne SAR data. The development of the methods is the first step towards an operational system for near-real-time windstorm damage monitoring, with a latency of only a few days after the storm event in the best case. Windstorm detection using SAR data is not trivial, particularly at C-band. It can be expected that a large-area and severe windstorm damage may affect backscatter similar to clear cutting operation, that is, decrease the backscatter intensity, while a small area damage may increase the backscatter of the neighboring area, due to various scattering mechanisms. The remaining debris and temporal variation in the weather conditions and possible freeze–thaw transitions also affect observed backscatter changes. Three candidate windstorm detection methods were suggested, based on the improved k-nn method, multinomial logistic regression and support vector machine classification. The approaches use multitemporal ESA Sentinel-1 C-band SAR data and were evaluated in Southern Finland using wind damage data from the summer 2017, together with 27 Sentinel-1 scenes acquired in 2017 and other geo-referenced data. The stands correctly predicted severity category corresponded to 79% of the number of the stands in the validation data, and already 75 % when only one Sentinel-1 scene after the damage was used. Thus, the damaged forests can potentially be localized with proposed tools within less than one week after the storm damage. In this study, the achieved latency was only two days. Our preliminary results also indicate that the damages can be localized even without separate training data.</p>
Visa mer

Organisationer och upphovspersoner

Aalto-universitetet

Tomppo Erkki

Ronoud Ghasem

Praks Jaan Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Journal/Serie

Remote sensing

Moderpublikationens namn

Remote Sensing

Volym

13

Nummer

3

Artikelnummer

383

Sidor

1-28

Publikationsforum

71359

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Parallellsparad

Ja

Parallellagringens licens

CC BY

Publiceringsavgift för öppen tillgång €

1021

Betalningsår för den öppen tillgång publiceringsavgiften

2021

Övriga uppgifter

Vetenskapsområden

Fysik; Geovetenskaper; Miljövetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.3390/rs13030383

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja