Sea Ice Characterization from Earth Observation Data by Explainable Artificial Intelligence
Bidragets beskrivning
The project will concentrate on estimation of the most essential sea ice (SI) parameters and SI classification from space-borne microwave earth-observation (EO) instruments and ice models by deep machine learning (ML). There exist notable deficiencies in the current ML SI algorithms. Typically, ML appears as a black box: no or only little information on the relationship between the ML inputs, structure of the ML, representations encoded by the ML, and the outputs are available. Also, no local uncertainties of the ML estimates are provided. These deficiencies will be addressed by developing an integrated set of optimized sea ice classification and parameter estimation algorithms with involved local uncertainties. Explainable AI (XAI), including sensitivity analysis, will be applied for analyzing and developing the ML. ML hyper-parameter (structure) optimization will also be applied to optimize the algorithms. The proposed work will be performed using existing Baltic Sea and Arctic data.
Visa merStartår
2025
Slutår
2029
Beviljade finansiering
Rollen i Finlands Akademis konsortium
Övriga parter i konsortiet
Finansiär
Finlands Akademi
Typ av finansiering
Akademiprojekt
Utlysning
Beslutfattare
Forskningsrådet för naturvetenskap och teknik
12.06.2025
12.06.2025
Övriga uppgifter
Finansieringsbeslutets nummer
370301
Vetenskapsområden
Geovetenskaper
Forskningsområden
Geotieteet
Identifierade teman
arctic region