Sea Ice Characterization from Earth Observation Data by Explainable Artificial Intelligence

Bidragets beskrivning

The project will concentrate on estimation of the most essential sea ice (SI) parameters and SI classification from space-borne microwave earth-observation (EO) instruments and ice models by deep machine learning (ML). There exist notable deficiencies in the current ML SI algorithms. Typically, ML appears as a black box: no or only little information on the relationship between the ML inputs, structure of the ML, representations encoded by the ML, and the outputs are available. Also, no local uncertainties of the ML estimates are provided. These deficiencies will be addressed by developing an integrated set of optimized sea ice classification and parameter estimation algorithms with involved local uncertainties. Explainable AI (XAI), including sensitivity analysis, will be applied for analyzing and developing the ML. ML hyper-parameter (structure) optimization will also be applied to optimize the algorithms. The proposed work will be performed using existing Baltic Sea and Arctic data.
Visa mer

Startår

2025

Slutår

2029

Beviljade finansiering


Ari Visa Orcid -palvelun logo
342 336 €

Rollen i Finlands Akademis konsortium

Övriga parter i konsortiet

Leader
Meteorologiska Institutet (370271)
336 790 €

Finansiär

Finlands Akademi

Typ av finansiering

Akademiprojekt

Beslutfattare

Forskningsrådet för naturvetenskap och teknik
12.06.2025

Övriga uppgifter

Finansieringsbeslutets nummer

370301

Vetenskapsområden

Geovetenskaper

Forskningsområden

Geotieteet

Identifierade teman

arctic region