Advances in sensor array processing: from theory-driven methods to data-driven inference
Bidragets beskrivning
This project aims to advance sensor array processing by combining traditional model-based methods with innovative data-driven techniques. While data-driven methods have revolutionized fields like speech processing, their impact on sensor array processing has been limited due to the distinct nature of physical systems governed by physical and statistical models. The project will focus on improving direction-of-arrival estimation using Sparse Bayesian Learning and maximum likelihood estimation. It will also develop novel beamformers for optimal signal power and waveform estimation, with finite-sample and asymptotic performance analysis. Additionally, the project explores data-driven generative modeling techniques like adversarial autoencoders and conditional GANs for denoising the sample covariance matrix in low SNR and limited snapshot conditions. The research will be tested in real-world applications and is supported by expert collaborators from top universities in US and Europe.
Visa merStartår
2025
Slutår
2029
Beviljade finansiering
Finansiär
Finlands Akademi
Typ av finansiering
Akademiprojekt
Utlysning
Beslutfattare
Forskningsrådet för naturvetenskap och teknik
12.06.2025
12.06.2025
Övriga uppgifter
Finansieringsbeslutets nummer
368630
Vetenskapsområden
El-, automations- och telekommunikationsteknik, elektronik
Forskningsområden
Signaalinkäsittely
Identifierade teman
computer science, information science, algorithms