Multimodal self-supervised deep learning for precision cancer medicine

Bidragets beskrivning

Precision cancer medicine aims to obtain treatment-impacting information on individual cancer cases by performing in-depth cancer profiling. Profiling often includes tissue imaging and, more recently, sequencing of cancer genomes. Machine learning methods such as ChatGPT have been shown to be capable of solving a wide range of problems expressed in natural language or as images. Here, we seek to employ similar machine learning approaches in precision cancer medicine to answer questions such as what is the molecular subtype and suitable treatments for particular cancer, or whether a cancer may be aggressive or indolent. To do this, we will develop machine learning models that do not require guidance by experts, but instead learn to automatically recognize similarities and differences between cancers based on histological images and genomics data. These models can then be used to create software tools to assist clinicians to better diagnose and treat patients.
Visa mer

Startår

2025

Slutår

2029

Beviljade finansiering

Esa Pitkänen Orcid -palvelun logo
600 000 €

Finansiär

Finlands Akademi

Typ av finansiering

Akademiprojekt

Beslutfattare

Forskningsrådet för naturvetenskap och teknik
12.06.2025

Övriga uppgifter

Finansieringsbeslutets nummer

372081

Vetenskapsområden

Biomedicinska vetenskaper

Forskningsområden

Systeemibiologia, bioinformatiikka

Identifierade teman

cancer