SPARSe: Strategic Planning and Analysis for Reduced Sensing in Inverse Problems

Bidragets beskrivning

This project focuses on improving methods to solve inverse problems, which are essential in fields like medical imaging and seismic exploration. In an inverse problem, we work backward from measurements to determine hidden information, such as identifying tumors from X-ray CT data or underground structures from seismic waves. Traditional methods rely on reconstructing detailed images, which can be inefficient and prone to errors when data is limited. Our approach directly targets the most important details, called Quantities of Interest, using advanced mathematical tools to work efficiently with sparse data. This means fewer measurements are needed, reducing costs, radiation exposure in medical imaging, and environmental impacts in seismic studies. By creating user-friendly software and validating the method with real-world examples, this project aims to make cutting-edge mathematics accessible and impactful in medicine, engineering, and geosciences.
Visa mer

Startår

2025

Slutår

2029

Beviljade finansiering

Babak Maboudi Afkham Orcid -palvelun logo
653 031 €

Finansiär

Finlands Akademi

Typ av finansiering

Akademiforskare

Beslutfattare

Forskningsrådet för naturvetenskap och teknik
12.06.2025

Övriga uppgifter

Finansieringsbeslutets nummer

371523

Vetenskapsområden

Data- och informationsvetenskap

Forskningsområden

Laskennallinen tiede

Identifierade teman

computer science, information science, algorithms