Advances in generalized Bayesian inference via differential-geometric methods

Bidragets beskrivning

The successful deployment of AI solutions relies heavily on the quality of underlying model assumptions and the learning algorithms they employ. The design of loss functions is therefore crucial in the process of model development to the specific tasks at hand. For instance, the Hyvärinen score matching principle has been widely applied in AI systems, particularly for tasks such as image generation. This project seeks to further develop and broaden the range of loss functions by incorporating concepts from differential geometry. Additionally, we leverage the theory of estimating functions to create optimal inference algorithms for the proposed loss functions, as well as for those previously introduced in the literature. These advancements hold significant potential for a wide range of applications, spanning scientific research and societal challenges at large.
Visa mer

Startår

2025

Slutår

2029

Beviljade finansiering

Marcelo Hartmann Orcid -palvelun logo
648 188 €

Finansiär

Finlands Akademi

Typ av finansiering

Akademiforskare

Beslutfattare

Forskningsrådet för naturvetenskap och teknik
12.06.2025

Övriga uppgifter

Finansieringsbeslutets nummer

369502

Vetenskapsområden

Data- och informationsvetenskap

Forskningsområden

Tietojenkäsittelytieteet