Corporate Earnings Calls and Analyst Forecast Accuracy: A Causal Forest Approach

Bidragets beskrivning

The key goal of this research is to examine the impact of analyst participation in corporate earnings calls on forecast accuracy using causal forest, a machine learning-based causal inference method. By addressing selection bias inherent in analyst participation, this study aims to provide a more robust estimation of its effects while identifying heterogeneous treatment effects to determine which analysts benefit most. Additionally, it explores the regulatory implications of selective access to management, particularly concerning Regulation Fair Disclosure (Reg FD), to assess whether such interactions provide certain analysts with an unfair informational advantage. By integrating machine learning with causal inference, this research advances empirical methodologies and offers valuable insights into financial information dissemination and market efficiency.
Visa mer

Startår

2024

Slutår

2025

Beviljade finansiering

Yiqun Zhang
28 000 €

Finansiär

Stiftelsen för främjandet av värdepappersmarknaden i Finland sr

Typ av finansiering

Forskningsbidrag

Övriga uppgifter

Finansieringsbeslutets nummer

Suomen Arvopaperimarkkinoiden Edistämissäätiö_20250070

Vetenskapsområden

Nationalekonomi

Identifierade teman

forest, forestry