Multi-Modal Data Integration Framework to Overcome Chemotherapy Resistance
Akronym
MULTISTANCE
Bidragets beskrivning
The MULTISTANCE project is aimed at tackling one of the most challenging issues in cancer treatment today: chemotherapy resistance in ovarian high-grade serous carcinoma (HGSC), which is the most prevalent and deadly type of ovarian cancer. At the heart of MULTISTANCE is the development of computational models that combine genomic data from cancer cells with the characteristics of these cells in histopathological images obtained during routine diagnosis. These models leverage a visual language model based on a "Foundation Model," which has been trained on over a million pairs of histopathological images and their clinical descriptions. The model is designed to interpret complex medical images and provide detailed, understandable insights into the cancer's characteristics. The outcome of MULTISTANCE will be publicly available models that are able to integrate multiple types of data and predict chemotherapy outcomes.
Visa merStartår
2025
Slutår
2027
Beviljade finansiering
Rollen i Finlands Akademis konsortium
Övriga parter i konsortiet
Finansiär
Finlands Akademi
Typ av finansiering
Akademiprojekt med särskild inriktning
Utlysning
Beslutfattare
Suomen akatemian muu päättäjä
18.12.2024
18.12.2024
Övriga uppgifter
Finansieringsbeslutets nummer
364921
Vetenskapsområden
Biomedicinska vetenskaper
Forskningsområden
Systeemibiologia, bioinformatiikka