A Mathematical Theory of Trustworthy Federated Learning
Bidragets beskrivning
Artificial intelligence (AI) services are now integral to our daily lives, influencing aspects such as job searches, housing, and relationships through AI-powered platforms. Many of these services employ federated learning (FL) systems to create personalized machine learning (ML) models for users, providing tailored predictions on interests like job offers, dating, and music videos. Despite the usefulness of FL systems, there is increasing evidence for their potentially harmful effects, such as boosting addictive user behavior or even genocide. This project breaks ground for trustworthy FL, shifting the focus of current FL research towards a more human-centric perspective. Besides the computational and statistical properties of FL systems, this project emphasizes important design criteria for trustworthy AI.
Visa merStartår
2024
Slutår
2028
Beviljade finansiering
Finansiär
Finlands Akademi
Typ av finansiering
Akademiprojekt
Utlysning
Beslutfattare
Forskningsrådet för naturvetenskap och teknik
13.06.2024
13.06.2024
Övriga uppgifter
Finansieringsbeslutets nummer
363624
Vetenskapsområden
Matematik
Forskningsområden
Sovellettu matematiikka