AI-Based Design of Energy and Resource Efficient Hardware Accelerators

Bidragets beskrivning

Hardware accelerators can significantly improve energy efficiency for tasks such as AI, network processing, physics simulation, or cryptography. However, with the high pace in algorithm development, the existing fixed function accelerators quickly become chip waste. The proposed research aims to avoid chip waste and automate the generation of reusable programmable hardware accelerators using reinforcement learning methods. The methods automatically find a valid low cost accelerator design with desired properties. The methods start from high-level program descriptions and generate complete compiler programmable accelerators with desired qualities such as optimized energy-efficiency. The research is made possible by combining chip design knowledge at the Customized Parallel Computing research group at Tampere University with reinforcement learning and algorithm development knowledge at the Robot Learning research group at Aalto University.
Visa mer

Startår

2023

Slutår

2025

Beviljade finansiering


Pekka Jääskeläinen Orcid -palvelun logo
459 260 €

Rollen i Finlands Akademis konsortium

Övriga parter i konsortiet

Leader
Aalto-universitetet (353198)
399 870 €

Finansiär

Finlands Akademi

Typ av finansiering

Akademiprojekt med särskild inriktning

Övriga uppgifter

Finansieringsbeslutets nummer

353199

Vetenskapsområden

El-, automations- och telekommunikationsteknik, elektronik

Forskningsområden

Tietokonetekniikka, tietokonearkkitehtuurit