Machine learning algorithms for energy efficient and QoS aware communications in heterogeneous 6G mmWave/sub-THz networks

Bidragets beskrivning

The rollouts of millimeter wave (mmWave, 28-100 GHz) band 5G New Radio technology is hampered by highly unreliable connectivity and poor energy efficiency severely violating the IMT-2020 requirements. Even though 5G systems are not yet fully deployed, 3GPP already starts standardization of 6G systems operating in sub-THz band (100-300 GHz) that will be subject to similar effects. In EFFICIENT we will develop models, methods, and practical algorithms simultaneously improving the energy efficiency and user performance at the radio access level in 5G/6G networks operating in mmWave and sub-Thz frequency bands. The successful completion of the project will speed up the rollout of mmWave 5G NR systems as well as standardization of future mmWave/sub-THz 6G systems as well as improve durability, energy efficiency, and recyclability of user equipment by increasing the battery lifetime.
Visa mer

Startår

2023

Slutår

2025

Beviljade finansiering

Jari Nurmi Orcid -palvelun logo
323 242 €

Evgeny Andreevich Kucheryavy Orcid -palvelun logo
323 242 €

Rollen i Finlands Akademis konsortium

Finansiär

Finlands Akademi

Typ av finansiering

Akademiprojekt med särskild inriktning

Övriga uppgifter

Finansieringsbeslutets nummer

353126

Vetenskapsområden

El-, automations- och telekommunikationsteknik, elektronik

Forskningsområden

Tietoliikennetekniikka