New frontiers in Bayesian optimal design for applied inverse problems
Akronym
BODAIP
Bidragets beskrivning
While available computational resources seem ever-increasing, the data acquisition in many large-scale scientific problems will remain restricted or expensive also in future due to fundamental physical or economical limitations. This project studies Bayesian optimal experimental design, which aims at maximizing the value of experimental data. We develop methods that guide and accelerate computations needed for large-scale nonlinear inverse problems. The developed techniques are applied to magnetorelaxometry imaging, internal temperature measurements for validating models for iron loss in electric motors, and head imaging by electrical impedance tomography.
Visa merStartår
2022
Slutår
2026
Beviljade finansiering
Rollen i Finlands Akademis konsortium
Övriga parter i konsortiet
Övriga uppgifter
Finansieringsbeslutets nummer
348503
Vetenskapsområden
Matematik
Forskningsområden
Sovellettu matematiikka
Identifierade teman
computer science, information science, algorithms