New frontiers in Bayesian optimal design for applied inverse problems

Akronym

BODAIP

Bidragets beskrivning

While available computational resources seem ever-increasing, the data acquisition in many large-scale scientific problems will remain restricted or expensive also in future due to fundamental physical or economical limitations. This project studies Bayesian optimal experimental design, which aims at maximizing the value of experimental data. We develop methods that guide and accelerate computations needed for large-scale nonlinear inverse problems. The developed techniques are applied to magnetorelaxometry imaging, internal temperature measurements for validating models for iron loss in electric motors, and head imaging by electrical impedance tomography.
Visa mer

Startår

2022

Slutår

2026

Beviljade finansiering


Nuutti Hyvönen Orcid -palvelun logo
449 587 €

Rollen i Finlands Akademis konsortium

Övriga parter i konsortiet

Partner
Lappeenrannan–Lahden teknillinen yliopisto LUT (348504)
450 307 €

Finansiär

Finlands Akademi

Typ av finansiering

Akademiprojekt

Övriga uppgifter

Finansieringsbeslutets nummer

348503

Vetenskapsområden

Matematik

Forskningsområden

Sovellettu matematiikka

Identifierade teman

computer science, information science, algorithms